Asymptotic expression for the fixation probability of a mutant in star graphs
نویسنده
چکیده
We consider the Moran process in a graph called “star” and obtain the asymptotic expression for the fixation probability of a single mutant when the size of the graph is large. The expression obtained corrects previously known expression announced in reference [E Lieberman, C Hauert, and MA Nowak. Evolutionary dynamics on graphs. Nature, 433(7023):312–316, 2005] and further studied in [M. Broom and J. Rychtar. An analysis of the fixation probability of a mutant on special classes of non-directed graphs. Proc. R. Soc. A-Math. Phys. Eng. Sci., 464(2098):2609–2627, 2008]. We also show that the star graph is an accelerator of evolution, if the graph is large enough.
منابع مشابه
Evolutionary Dynamics on Small-order Graphs
We study the stochastic birth-death model for structured finite populations popularized by Lieberman et al. [Lieberman, E., Hauert, C., Nowak, M.A., 2005. Evolutionary dynamics on graphs. Nature 433, 312-316]. We consider all possible connected undirected graphs of orders three through eight. For each graph, using the Monte Carlo Markov Chain simulations, we determine the fixation probability o...
متن کاملFast and asymptotic computation of the fixation probability for Moran processes on graphs
Evolutionary dynamics has been classically studied for homogeneous populations, but now there is a growing interest in the non-homogeneous case. One of the most important models has been proposed in Lieberman et al. (2005), adapting to a weighted directed graph the process described in Moran (1958). The Markov chain associated with the graph can be modified by erasing all non-trivial loops in i...
متن کاملFixation probability on clique-based graphs
The fixation probability of a mutant in the evolutionary dynamics of Moran process is calculated by the Monte-Carlo method on a few families of clique-based graphs. It is shown that the complete suppression of fixation can be realized with the generalized clique-wheel graph in the limit of small wheel-clique ratio and infinite size. The family of clique-star is an amplifier, and clique-arms gra...
متن کاملEvolutionary Dynamics on Graphs - the Effect of Graph Structure and Initial Placement on Mutant Spread
We study the stochastic birth-death process in a finite and structured population and analyze how the fixation probability of a mutant depends on its initial placement. In particular, we study how the fixation probability depends on the degree of the vertex where the mutant is introduced, and which vertices are its neighbours. We find that within a fixed graph, the fixation probability of a mut...
متن کاملOn Edge-Decomposition of Cubic Graphs into Copies of the Double-Star with Four Edges
A tree containing exactly two non-pendant vertices is called a double-star. Let $k_1$ and $k_2$ be two positive integers. The double-star with degree sequence $(k_1+1, k_2+1, 1, ldots, 1)$ is denoted by $S_{k_1, k_2}$. It is known that a cubic graph has an $S_{1,1}$-decomposition if and only if it contains a perfect matching. In this paper, we study the $S_{1,2}$-decomposit...
متن کامل